ГВЭ математика 9 класс


Чтобы посмотреть этот PDF файл с форматированием и разметкой, скачайте его и откройте на своем компьютере.

0

Федеральная служба по надзору в сфере образования и науки







Методическое письмо о проведении государственной
итоговой аттестации по образовательным
программам основного общего и среднего общего
образования по
математике

в форме
государственного выпускн
ого экзамена

письменная и устная формы












Москва, 2015



1


Оглавление


Перечень условных обозначений, сокращений и терминов

................................
....

2

1. Проведение ГИА
-
9 по математике в форме ГВЭ письменная и устная
формы

................................
................................
................................
...........................

3

1.1.

Особенности экзаменационной работы ГВЭ
-
9 по математике письменная
форма

................................
................................
................................
.............................

3

1.1.1.

Оценивание результатов экзамена ГВЭ
-
9 по математике

письменная
форма

.
9

1.2. Особенност
и экзаменационной работы ГВЭ
-
9 по математике устная форма

................................
................................
................................
................................
.......

10

Оценка выполнения отдельных заданий экзаменационной работы и оценивание
результатов экзамена

................................
................................
................................
..

14

Критерии оценки выполнения отдельных заданий экзаменационной работы

.....

14

2. Проведение ГИА
-
11 по математике в форме ГВЭ письменная и устная
формы

................................
................................
................................
.........................

16

2.1. Особенности экзаменационной работы ГВЭ
-
11 по математике письменная
форма

................................
................................
................................
...........................

16

2.1.1. Оценивание результатов экзамена ГВЭ
-
11 по математи
ке письменная
форма

................................
................................
................................
...........................

23

2.2. Особенности экзаменационной работы ГВЭ
-
11 по математике устная
форма

................................
................................
................................
...........................

24

Оценка выполнения отдель
ных заданий экзаменационной работы и оценивание
результатов экзамена

................................
................................
................................
..

27

Критерии оценки выполнения отдельных заданий экзаменационной работы

.....

28

Приложение 1. Справочные материалы по математике для участников ГВЭ
-
9

..

30

Приложение 2. Справочные материалы по математике для участников ГВЭ
-
11

................................
................................
................................
................................
......

.
33













2

Перечень условных обозначений, сокращений и терминов


ГВЭ

Государственный выпускной экзамен

ГИА

Государственная итоговая аттестация по образовательным
программам основного общего и среднего общего
образования

ГИА
-
11

Государственная итого
вая аттестация по образовательным
программам среднего общего образования

ГИА
-
9

Государственная итоговая аттестация по образовательным
программам основного общего образования

ГЭК

Государственная экзаменационная комиссия субъекта
Российской Федерации

Мино
брнауки
России

Министерство образования и науки Российской Федерации

Обучающиеся с
ОВЗ

Обучающиеся по образовательным программам основного
общего и среднего общего образования с ограниченными
возможностями здоровья

ОГЭ

Основной государственный экзамен

Порядок ГИА
-
11

Приказ Минобрнауки России от 26.12.2013 № 1400 Об
утверждении Порядка проведения государственной
итоговой аттестации по образовательным программам
среднего общего образования зарегистрирован
Минюстом России 03.02.2014, регистрационный № 3
1205)
в редакции приказа Минобрнауки России от 16.01.2015
№ 9 зарегистрирован Минюстом России 30.01.2015,
регистрационный № 35794;

Порядок ГИА
-
9

Приказ Минобрнауки России от 25.12.2013 № 1394 Об
утверждении Порядка проведения государственной
ито
говой аттестации по образовательным программам
основного общего образования
зарегистрирован
Минюстом России 03.02.2014, регистрационный № 31206
в редакции приказа Минобрнауки России от 16.01.2015 №
10 зарегистрирован Минюстом России 27.01.2015,
регист
рационный № 35731

ППЭ

Пункт проведения экзамена

РЦОИ

Региональный центр обработки информации субъекта

3

Российской Федерации

СКОО

Специальная коррекционная образовательная
организация

ЭМ

Экзаменационные материалы


В данном Методическом письме даются
разъяснения по вопросам
ЭМ

для
ГВЭ

для обучающихся, освоивших образовательные программы основного
общего образования
и среднего общего образования по математике письменная
и устная форм
ы
).

В письме комментируются подходы к отбору содержания
экзаменационны
х материалов, описываются экзаменационные модели и типы
заданий, формулируются требования по организации и проведению экзамена,
даются рекомендации по оцениванию экзаменационных работ участников
экзамена, приводятся образцы заданий.


1.
Проведение ГИА
-
9 по

математике

в форме ГВЭ письменная и устная
формы

ГВЭ для обучающихся, освоивших образовательные программы основного
общего образования далее


ГВЭ
-
9, проводится в соответствии с Порядком
ГИА
-
9.

Категории обучающихся, сдающих ГИА в форме ГВЭ, перечисл
ены в
пункте 7. Порядка ГИА
-
9.

ЭМ соответствуют Федеральному компоненту государственного стандарта
общего образования Приказ Минобразования России от 05.03.2004 г. № 1089.


1.1.

Особенности экзаменационной работы ГВЭ
-
9 по
математике

письменная форма

При ра
зработке экзаменационной модели соблюдалась преемственность с
традиционными и новыми формами экзамена по математике для обучающихся,
освоивших образовательные программы основного общего образования.

На экзамене проверяется с
формированность представлений в
ыпускников о
математике как универсальном языке науки, об идеях и методах математики,
овладение математическими знаниями и умениями,

соответствующими
Федеральному компоненту государственного стандарта общего образования
Приказ Мино
б
разования России от 05.
03.2004 г. №1089,
развитие логического
мышления, пространственного воображения, алгоритмической культуры.

Для проведения ГВЭ
-
9 по математике разработаны варианты
экзаменационных работ, включающие в себя
задания

как по курсу Алгебра,
так и по курсу Гео
метрия

см. образец экзаменационной работы по математике
для проведения ГВЭ
-
9)
. Эти работы предназначены и для тех выпускников,

4

которые осваивали программу в рамках двух предметов, и для тех, кто изучал
математику в рамках интегрированного
курса.

На выпол
нение экзаменационной работы по математике даётся 3

часа 55
минут 235

минут.

В указанном Порядке
ГИА
-
9
формулируются следующие требования
проведения экзамена:

В продолжительность экзаменов по учебным предметам не включается
время, выделенное на подгот
овительные мероприятия инструктаж
обучающихся, вскрытие пакетов с экзаменационными материалами, заполнение
регистрационных полей экзаменационной работы, настройка технических
средств.

При продолжительности экзамена 4 и более часа организуется питание
обу
чающихся.

Для обучающихся с
ОВЗ
, обучающихся детей
-
инвалидов и инвалидов, а
также тех, кто обучался по состоянию здоровья на дому, в образовательных
организациях, в том числе санаторно
-
курортных, в которых проводятся
необходимые лечебные, реабилитационные
и оздоровительные мероприятия для
нуждающихся в длительном лечении, продолжительность экзамена
увеличивается на 1,5 часа.

При проведении экзамена для участников с ограниченными
возможностями здоровья присутствуют ассистенты, оказывающие
экзаменуемым необх
одимую техническую помощь с учетом их индивидуальных
возможностей: помощь в занятии рабочего места, передвижении, сурдопереводе
см. п. 34 и 37 Порядка

ГИА
-
9
).

Экзаменационный вариант
маркирован буквой А
включает 10 заданий:
одно задание по арифметике,

одно задание по теории вероятностей, семь заданий по
алгебре, одно задание по геометрии. Задания являются стандартными для курса
математики основной школы. Все они, кроме одного, относятся к заданиям с
развернутым ответом и требуют записи решения задачи,
демонстрирующей
умение
выпускника математически грамотно излагать решение, приводя при этом
необходимые пояснения и обоснования. При выполнении задания 4

или
аналогичного ему

достаточно дать краткий ответ на каждый из поставленных
вопросов.

Структура раб
оты отвечает задаче построения системы
дифференцированного обучения в современной школе. Дифференциация
обучения направлена на достижение двух целей: формирования у всех учащихся
базовой математической подготовки, составляющей функциональную основу
общего
образования; одновременного создания для части школьников условий,
способствующих получению подготовки повышенного уровня, достаточной для
активного использования математики в дальнейшем обучении.

Задания в экзаменационном варианте расположены по нарастан
ию
сложности. Задания 1
-
7 соответствуют уровню базовой математической
подготовки, задания 8
-
10


уровню повышенной подготовки.

В своей совокупности варианты охватывают все блоки содержания,
традиционно представленные в курсе математики 5
-
9
-
х классов, что

обеспечивает

5

достаточную полноту проверки овладения содержанием курса. В соответствии со
спецификой курса математики основное внимание уделяется проверке практической
составляющей математической подготовки выпускников, когда овладение
теоретическими полож
ениями проверяется опосредованно через проверку умения
решать задачи.

Все задания, используемые для составления экзаменационных
вариантов, содержатся в открытом банке заданий ОГЭ.

Вместе с экзаменационным вариантом участникам экзамена выдаются
справочные м
атериалы, содержащие таблицу квадратов двузначных чисел, основные
формулы по алгебре и геометрии

см. Приложение

1
)
. При выполнении
экзаменационной работы допускается использование линейки, использование
калькулятора не разрешается.

При проверке математич
еской подготовки выпускников оценивается уровень,
на котором сформированы следующие умения:

выполнять арифметические действия, сочетая устные и письменные приемы;

проводить по известным формулам и правилам преобразования буквенных
выражений;

вычислять зна
чения числовых и буквенных выражений, осуществляя
необходимые подстановки и преобразования;

читать графики элементарных функций;

решать линейные и квадратные уравнения и неравенства, их системы;

моделировать реальные ситуации на языке теории вероятностей
и статистики,
вычислять в простейших случаях вероятности событий;

решать планиметрические задачи на нахождение геометрических величин
длин, углов, площадей;

проводить доказательные рассуждения в ходе решения задач.

В 2015 г. для государственной итоговой
аттестации выпускников, освоивших
образовательные программы основного общего образования в специальных
коррекционных образовательных организациях для обучающихся с
ОВЗ
,
разработаны
специальные
ЭМ

по математике для проведения ГВЭ
-
9
.

Экзаменационный вариа
нт маркирован буквой К включает 10 заданий: два
задания по арифметике, два задания по теории вероятностей и статистике, пять
заданий по алгебре, одно задание по геометрии.
Образец
вариант
а

соответствующей
экзаменационной
работы приводится
ниже
. В данн
ой работе все задания относятся к
уровню базовой подготовки.

При проверке математической подготовки выпускников, освоивших
образовательные программы основного общего образования в специальных
коррекционных образовательных организациях для обучающихся с
ограниченными возможностями здоровья, оценивается уровень, на котором
сформированы следующие умения:

выполнять арифметические действия, сочетая устные и письменные приемы;

проводить по известным формулам и правилам преобразования буквенных
выражений;

вычи
слять значения числовых и буквенных выражений, осуществляя
необходимые подстановки и преобразования;

читать графики элементарных функций;


6

решать линейные и квадратные уравнения;

моделировать реальные ситуации на языке теории вероятностей, вычислять в
прос
тейших случаях вероятности событий;

решать планиметрические задачи на нахождение геометрических величин
длин, углов, площадей;

извлекать информацию из таблиц и диаграмм, преобразовывать ее с целью
ответа на вопрос задачи;

располагать числа на координатно
й прямой
.

Ниже приведены образцы экзаменационных работ для проведения ГВЭ
-
9 по
математике.


Следует иметь в виду, что образцы предназначены для того, чтобы дать
возможность составить представление о структуре будущей экзаменационной
работы, числе, форме и
уровне сложности заданий, и не отражает всех элементов
содержания, которые будут проверяться с помощью вариантов экзаменационной
работы.


Образец

А

экзаменационного варианта для проведения
ГВЭ
-
9
по
математике


Часть 1

1.

Решите уравнение:
.

2.

Упростите выражение:
.

3.

Решите систему неравенств:
.

4.

Мяч упал с балкона на землю. График на рисунке показывает, как во
время падения менялась высота мяча над землей.


7


Используя график, ответьте на вопрос
ы:


а С какой высоты упал мяч?


б Сколько времени падал мяч?


в Какое расстояние пролетел мяч за первую
секунду?



5.

На экзамене 20 билетов, Сергей не выучил 3 из них. Найдите
вероятность того, что ему попадётся выученный билет.

6.

Товар на распродаже уцен
или на 30%, при этом он стал стоить 700 р.
Сколько рублей стоил товар до распродажи?

7.

Найдите больший угол равнобедренной трапеции
ABCD
, если
диагональ
АС

образует с основанием
AD

и боковой стороной
АВ

углы, равные

и

соответственно.


Часть 2

8.

Расположите числа в порядке возрастания:
;

и
.


9.


Решите уравнение:
.

10.

Один из катетов прямоугольного треугольника на 2 см б
ольше
другого, а его площадь меньше 60 см
2
. Какую длину может иметь больший
катет?



8

Образец

К

экзаменационного варианта для проведения
ГВЭ
-
9
по
математике
(
для обучающихся с
ОВЗ
)


1.

Решите уравнение:
.

2.

Упростите выражение:
.

3.

Вычислите:
.

4.

Одно из чисел
,
,
,

отмечено на
числовой
прямой
,
изображенной на рисунке,

точкой
A
.

Какое это число?


5.

Найдите значение выражения
.

6.

График, изображенный на рисунке, показыв
ает, как менялась в
течение суток температура воздуха. По горизонтали указывается время суток,
по вертикали


значение температуры в градусах Цельсия. Какова была
наибольшая температура

в течение этих суток
?


7.

В лыжных гонках участвуют 11 спортсменов из Ро
ссии, 6
спортсменов из Норвегии и 3 спортсмена из Швеции. Порядок, в котором
спортсмены стартуют, определяется жребием. Найдите вероятность того, что
первым будет стартовать спортсмен из Норвегии.

8.

Кофейник, который стоил 900 рублей, продаётся с 10
-
процентн
ой
скидкой. Сколько
стоит кофейник со скидкой
?

9.

Студент Петров выезжает из Наро
-
Фоминска в Москву на занятия в
университет. Занятия начинаются в 9:00. В таблице приведено расписание
утренних электропоездов от станции Нара до Киевского вокзала в Москве

в
нек
отором интервале времени
.


9

Отправление от
ст. Нара

Прибытие на Киевский
вокзал

6:35

7:59

7:05

8:15

7:28

8:30

7:34

8:57

Путь от вокзала до университета занимает 40 минут. Укажите время
отправления от станции Нара самого позднего из электропоездов, кото
рые
подходят студенту.

10.

Найдите угол

равнобедренной трапеции
, если
диагональ

образует с основанием

и боковой стороной

углы
,
равные

и

соответственно.




1.1.1.

Оценивание результатов экзамена ГВЭ
-
9 по
математике


письменная форма

В Порядке
ГИА
-
9
определены следующие подходы к оценке
экзаменационных работ в форме ГВЭ
-
9:

Экзаме
национные работы проверяются двумя экспертами. По
результатам проверки эксперты независимо друг от друга выставляют баллы за
каждый ответ на задания экзаменационной работы. Результаты каждого
оценивания вносятся в протоколы проверки предметными комиссиями,

которые
после заполнения передаются в РЦОИ для дальнейшей обработки. В случае
существенного расхождения в баллах, выставленных двумя экспертами,
назначается третья проверка. Существенное расхождение в баллах определено в
критериях оценивания по соответств
ующему учебному предмету.

Третий эксперт назначается председателем предметной комиссии из числа
экспертов, ранее не проверявших экзаменационную работу.

Третьему эксперту предоставляется информация о баллах, выставленных
экспертами, ранее проверявшими экзам
енационную работу обучающегося.
Баллы, выставленные третьим экспертом, являются окончательными.

п. 48
Порядка

ГИА
-
9
)
.


10


Полученные результаты в первичных баллах сумма баллов за правильно
выполненные задания экзаменационной работы РЦОИ переводит в
пятиба
лльную систему оценивания

п. 52 Порядка

ГИА
-
9
)
.

Результаты ГИА признаются удовлетворительными в случае, если
обучающийся по обязательным учебным предметам набрал минимальное
количество баллов, определенное органом исполнительной власти субъекта
Российск
ой Федерации, осуществляющим государственное управление в сфере
образования, учредителем, загранучреждением п. 60 Порядка

ГИА
-
9
)
.

В дополнение к перечисленным выше требованиям Порядка определены
следующие подходы к оценке экзаменационных работ по математ
ике:

за каждое верно выполненное задание выставляется 1 первичный балл;

задание считается выполненным верно, если выпускник выбрал
правильный путь решения, из письменной записи решения понятен ход его
рассуждений, получен верный ответ;

если по результатам
проверки экзаменационной работы двумя экспертами
получены суммы, расходящиеся на два или более первичных баллов, то по
заданиям, в которых обнаружены расхождения, назначается третья проверка; в
других случаях расхождения оценки, выставленной двумя эксперта
ми,
окончательной считается более высокая оценка;

рекомендуется следующая
шкала перевода
суммы первичных баллов за
выполненные задания ГВЭ
-
9 по математике в пятибалльную систему
оценивания:


Отметка по пятибалльной
системе оценивания

2

3

4

5

Перв
ичный балл

0

2

3

6

7

8

9

10


Результаты государственной итоговой аттестации признаются
удовлетворительными в случае, если выпускник при сдаче государственного
выпускного экзамена по математике получил отметку не ниже
удовлетворительной три.


1.2. Осо
бенности экзаменационной работы ГВЭ
-
9 по
математике

устная
форма

При разработке экзаменационной модели соблюдалась преемственность с
традиционными устными экзаменами по математике для обучающихся
по
образовательным программам основного общего образования
.
Образец
экзаменационного билета для проведения ГВЭ
-
9 по математике в устной форме
представлен
ниже
.

На экзамене проверяется с
формированность представлений выпускников о
математике как универсальном языке науки, об идеях и методах математики,
овладение ма
тематическими знаниями и умениями,

соответствующими

11

Федеральному компоненту государственного стандарта общего образования
Приказ Мино
б
разования России от 05.03.2004 г. №1089,
развитие логического
мышления, пространственного воображения, алгоритмической к
ультуры.

Для проведения ГВЭ
-
9 по математике в устной форме разработаны
варианты билетов, включающие в себя задания как по курсу алгебры, так и по
курсу геометрии. Билеты предназначены и для тех выпускников, которые
осваивали программу в рамках двух предме
тов, и для тех, кто изучал математику
в рамках интегрированного курса.

Билеты включают 5 заданий: теоретическая часть


два задания по геометрии,
практическая часть


одно задание по арифметике и два задания по алгебре. Задания
являются стандартными для к
урса математики основной школы. Все они
предполагают устное изложение решения, демонстрирующего
умение выпускника
математически грамотно излагать ход решения, приводя при этом необходимые
пояснения и обоснования.

Структура билета отвечает цели построения с
истемы
дифференцированного обучения в современной школе. Дифференциация
обучения направлена на решение двух задач: формирования у всех учащихся
базовой математической подготовки, составляющей функциональную основу
общего образования, и создания для части ш
кольников условий,
способствующих получению подготовки более высокого уровня.

Задания в практической части экзаменационных билетах расположены по
нарастанию сложности. Задания 3 и 4 соответствуют уровню базовой
математической подготовки, среди них одно за
дание по арифметике и одно
задание по алгебре. Задание 5 по курсу алгебры соответствуют уровню
повышенной подготовки.

Теоретические вопросы билетов охватывают основные блоки содержания
курса геометрии 7
-
9
-
х классов: Признаки равенства треугольников, 
Сумма
углов треугольника, Признаки подобия треугольников, Свойства и признаки
равнобедренного треугольника, Свойства прямоугольных треугольников,
Свойства четырехугольников, что обеспечивает достаточную полноту
проверки овладения содержанием курса

теоретические вопросы
экзаменационных билетов даны в Приложении 2. Владение выпускниками
материалом этих тем на уровне обязательной подготовки обеспечивает
у
с
пешность обучения в старшей школе.

В первом вопросе экзаменационного билета от экзаменуемого тр
ебуется
воспроизвести определение геометрической фигуры или конфигурации,
формулировку теоремы, связанной с ее свойствами или признаками доказывать
теорему не требуется, привести необходимые иллюстрирующие примеры.
Умение доказывать изученные в курсе сво
й
ства или признаки геометрических
фигур, сформулированные в виде теорем, экзаменуемый должен
продемонстрировать при ответе на второй вопрос билета. Формулировки и
доказательства
, воспроизводимые экзаменуемым,

могут различаться в
зависимости от учебников,
по которым экзаменуемый обучался и готовился к
экзамену
.


12

Ниже приводятся
перечни
т
еоретических вопросов

экзаменационных
билетов.

Первые вопросы

экзаменационных билетов

1.

Параллельные прямые; свойство углов, образованных при
пересечении параллельных прямых с
екущей.

2.

Равнобедренный треугольник; свойство углов при основании
равнобе
д
ренного треугольника.

3.

Высота, биссектриса и медиана треугольника; свойства медианы,
биссектрисы, высоты равнобедренного треугольника, проведенных к основ
а
нию.

4.

Признаки равенства треуг
ольников.

5.

Параллелограмм; свойства и признак параллелограмма.

6.

Прямоугольник, квадрат, ромб; их свойства.

7.

Трапеция; равнобедренная равнобокая трапеция; средняя линия
трап
е
ции и ее свойства.

8.

Прямоугольный треугольник; свойство прямоугольного
треугольника,
один из углов которого равен 30

.

9.

Теорема синусов; пример ее применения для решения
треугольников.

10.

Теорема косинусов; пример ее применения для решения
треугольн
и
ков.

11.


Теоремы о вписанной и описанной окружностях треугольника.

12.


Косинус

острого угла прямоугольного треугольника; пример его
прим
е
нения при решении прямоугольных треугольников.

13.


Синус острого угла прямоугольного треугольника; пример его
примен
е
ния при решении прямоугольных треугольников.

14.


Признаки подобия треугольников.

15.


Окру
жность, градусная мера дуги окружности; центральный угол,
вп
и
санный угол; теорема о вписанном угле.

Вторые вопросы экзаменационных билетов

1.
Признаки параллельности прямых доказательство одного из
признаков.

2.
Свойства медианы, биссектрисы, высоты ра
внобедренного
треугольника, проведённых к основанию доказательство одного из свойств.

3
.
Теорема о сумме углов треугольника.

4
. Теорема о средней линии трапеции.

5
. Теорема Пифагора.


13

В соответствии со спецификой математики овладение теоретическими
пол
ожениями курса алгебры проверяется опосредованно через проверку умения
решать задачи. Задания, включенные в билеты, относятся к следующим разделам
курса:
Числа и вычисления п
роценты; решение текстовых задач, Функции,
Уравнения и неравенства.

Все за
дания, используемые для составления
экзаменационных вариантов, содержатся в открытом банке заданий ОГЭ.

Ниже приводится пример экзаменационного билета по математике.


Образец
экзаменационного билета по математике


1.

Признаки равенства треугольников форму
лировки и пример
примен
е
ния одного из признаков.

2.

Теорема Пифагора формулировка и доказательство.

3
. Дана система неравенств

На каком рисунке изображено
множество решений этой системы?

1 система не имеет решений

3)

2)

4)

4.

На диаграмме представлены некоторые из крупнейших по площади
территории

стран мира.


Во сколько примерно раз площадь США больше площади Судана? Ответ
округлите до целых.

5
. Решите уравнение
x
3

+

4
x
2

=

9
x

+

36
.



14

Оценка выполнения отдельных заданий экзаменационной работы и
оценивание результатов экзам
ена

При проверке математической подготовки выпускников оценивается уровень,
на котором сформированы следующие умения:

воспроизводить определения геометрических объектов, формулировки
теорем и их доказательства, сопровождая их необходимыми чертежами и
рисун
ками;

использовать изученную математическую терминологию и символ
и
ку;

приводить примеры геометрических фигур и конфигураций, примеры
применения изученных свойств, фактов и методов;

отвечать на вопросы, связанные с изученными математическими фактами,
поняти
ями и их свойствами, с методами решения задач;

четко, грамотно, логично излагать свои мысли;

выполнять арифметические действия, сочетая устные и письменные
приемы;

вычислять значения числовых и буквенных выражений, осуществляя
необходимые подстановки и п
реобразования;

читать графики элементарных функций;

решать линейные и квадратные уравнения и неравенства, их системы.

При оценке экзаменационной работы используется пятибалльная шкала.
Результаты государственной итоговой аттестации признаются
удовлетворит
ельными в случае, если выпускник при сдаче
ОГЭ
-
9 по математике
получил отметку не ниже удовлетворительной.

Оценивание результата экзамена по математике осуществляется
в
соответствии со следующими критериями
.

Критерии оценки выполнения отдельных заданий

экз
аменационной работы


Номер
задания

Критерии оценки выполнения задания

Баллы


№ 1

Ответ экзаменуемого характеризуется смысловой
цельностью, речевой связностью и последовательностью
изложения:

логические ошибки отсутствуют, последовательность
изложения не

нарушена;

Или:

допущена одна ошибка / неточность, которая после
уточняющего вопроса экзаменатора исправлена
экзаменуемым

2


15

Ответ экзаменуемого характеризуется смысловой
цельностью, связностью и последовательностью изложения,

но

допущена одна ошибка / не
точность, которую после
уточняющего вопроса экзаменатора экзаменуемый не сумел
исправить

1

Другие случаи, не соответствующие указанным выше
критериям

0

№ 2

Ответ экзаменуемого характеризуется смысловой
цельностью, речевой связностью и последовательность
ю
изложения:

логические ошибки отсутствуют, последовательность
изложения не

нарушена;

Или:

допущена одна ошибка / неточность, которая после
уточняющего вопроса экзаменатора исправлена
экзаменуемым

2

Ответ экзаменуемого характеризуется смысловой
цельнос
тью, связностью и последовательностью изложения,

но

допущена одна ошибка / неточность, которую после
уточняющего вопроса экзаменатора экзаменуемый не сумел
исправить

1

Другие случаи, не соответствующие указанным выше
критериям

0

№ 3

Дан полностью верный

ответ: экзаменуемым выбраны
все верные утверждения, неверные утверждения не выбраны

2

Дан частично верный ответ: экзаменуемым выбраны не
все верные утверждения или выбрано одно неверное
утверждение

1

Другие случаи, не соответствующие указанным выше
к
ритериям

0

№ 4

Ход решения верный, получен верный ответ

2

Ход решения верный, но экзаменуемый допустил одну
ошибку вычислительного характера

1

Другие случаи, не соответствующие указанным выше
критериям

0

№ 5

Ход решения верный, получен верный ответ

2

Ход решения верный, но экзаменуемый допустил одну
ошибку вычислительного характера

1

Другие случаи, не соответствующие указанным выше
критериям

0

Максимальное количество баллов за экзаменационный билет

10


Рекомендуется следующая шкала перевода сумм
ы первичных баллов за
выполненные задания ГВЭ
-
9 по математике устная форма в пятибалльную
систему оценивания:


16


Отметка по пятибалльной
системе оценивания

2

3

4

5

Первичный балл

0

3

4

6

7

8

9

10


2. Проведение ГИА
-
11 по математике в форме ГВЭ 
письменная и устная
формы

ГВЭ для обучающихся по образовательным программам среднего общего
образования далее


ГВЭ
-
11 проводится в соответствии с Порядком ГИА
-
11.

Категории обучающихся, сдающих ГИА
-
11 в форме ГВЭ
-
11, перечислены
в пункте 7 Порядка ГИ
А
-
11.

Экзаменационные материалы соответствуют Федеральному компоненту
государственного стандарта общего образования Приказ Минобразования
России от 05.03.2004 г. №1089.

2.1. Особенности экзаменационной работы ГВЭ
-
11 по
математике

письменная форма

На вы
полнение экзаменационной работы по математике даётся 3

часа 55
минут 235 минут. В соответствии с Порядком

ГИА
-
11

на 1,5 часа может быть
увеличено время экзамена д
ля обучающихся, выпускников прошлых лет с
ограниченными возможностями здоровья, обучающихся
, выпускников прошлых
лет детей
-
инвалидов и инвалидов, а также тех, кто обучался по состоянию
здоровья на дому, в образовательных организациях, в том числе санаторно
-
курортных, в которых проводятся необходимые лечебные, реабилитационные и
оздоровительные м
ероприятия для нуждающихся в длительном лечении.

При проведении экзамена для участников с ограниченными
возможностями здоровья см. п. 37 и 40 Порядка

ГИА
-
11
 присутствуют
ассистенты, оказывающие экзаменуемым необходимую техническую помощь с
учетом их ин
дивидуальных возможностей: помощь в занятии рабочего места,
передвижении, сурдоперевод.

На экзамене проверяется с
формированность представлений выпускников о
математике как универсальном языке науки, об идеях и методах математики,
овладение математическими
знаниями и умениями,

определенными
Федеральным компонентом государственных стандартов основного общего и
среднего полного общего образования, базовый уровень приказ
Минобразования России от 05.03.2004 № 1089 Об утверждении федерального
компонента госуд
арственных стандартов начального общего, основного общего
и среднего полного общего образования
, умение
применять полученные
знания в практических ситуациях,
а также
развитие логического мышления,
пространственного воображения, алгоритмической культуры
.

Для проведения ГВЭ
-
11 по математике разработаны варианты
экзаменационных работ

(
маркированы буквой А
)
, включающие в себя задания

17

по курсам Алгебра и Геометрия основная школа, Алгебра и начала
анализа и Геометрия старшая школа. Эти работы п
редназначены и для тех
выпускников, которые осваивали программу в рамках двух предметов, и для тех,
кто изучал математику в рамках интегрированного курса
.

Ниже представлен

образец экзаменационной работы по математике для проведения ГВЭ
-
11
.

При разработке э
кзаменационной модели соблюдалась преемственность с
традиционными и новыми формами экзамена по математике для обучающихся
по образовательным программам среднего общего образования.

В 2015 г. впервые вводится м
одель ЕГЭ по математике базового уровня,
которая предназначена для государственной итоговой аттестации выпускников,
не планирующих продолжение образования в профессиях, предъявляющих
специальные требования к уровню математической подготовки. Это связано с
тем, что в настоящее время существенно возрастает роль общематематической
подготовки в повседневной жизни, в массовых профессиях.
Государственный
выпускной экзамен по математике соблюдает преемственность с моделью ЕГЭ
, а
в
се задания, используемые для сост
авления экзаменационных вариантов,
соответствуют заданиям открытого банка заданий единого государственного
экзамена по математике.

Экзаменационный вариант включает 10 заданий:

одну

зада
чу

по арифметике,
две

зада
чи

по теории вероятностей

и статистике
,
четы
ре
зада
чи

по алгебре и началам
анализа, три зада
чи

по геометрии, среди которых одн
а

зада
ча

по план
иметрии и две

зада
чи

по стереометрии.
Задачи с
1

по
9
соответствуют заданиям
базовой части
ЕГЭ

проф
ильного
уровня
, задача 10 представляет собой
облегченный в
ариант
задания 17 экзамена
ЕГЭ
проф
ильного
уровня
.


Задания являются стандартными для курса математики старшей школы. Все
они относятся к заданиям с развернутым ответом и требуют записи решения,
демонстрирующей
умение выпускника математически грамотно изла
гать ход
решения, приводя при этом необходимые пояснения и обоснования.

Задания в экзаменационных работах расположены по нарастанию
сложности


от относительно простых до

более

сложных.
Они не требуют
громоздких вычислений и нестандартных умозаключений.

В

своей совокупности
варианты охватывают все блоки содержания, традиционно представленные в курсе
математики 10
-
1112 классов, что обеспечивает достаточную полноту проверки
овладения содержанием курса. В соответствии со спецификой курса математики
основное

внимание уделяется проверке практической составляющей
математической подготовки выпускников, когда овладение теоретическими
положениями проверяется опосредованно через проверку умения решать задачи.

Вместе с экзаменационным вариантом участникам экзамена в
ыдаются
справочные материалы
см. Приложение
2
).
При выполнении экзаменационной
работы допускается использование линейки, использование калькулятора не
разрешается.

При проверке математической подготовки участников экзамена оценивается
уровень сформирован
ности следующих умений:


18

выполнять арифметические действия, сочетая устные и письменные
приемы; находить значения корня натуральной степени, степени с
рациональным показателем, логарифма;

переходить от одной формы записи чисел к другой, предста
в
лять
десятич
ную дробь в виде обыкновенной и в простейших случаях обыкновенную
в виде десятичной, пр
о
центы


в виде дроби и дробь


в виде процентов;
записывать большие и малые числа с испол
ь
зованием целых степеней

числа 10
;

решать текстовые задачи, включая задачи, свя
занные с отн
о
шением и с
пропорциональностью величин, дробями и пр
о
центами;

проводить по известным формулам и правилам преобразования буквенных
выражений, включающих степени, радикалы, логарифмы и тригонометрические
функции;

вычислять значения числовых и бу
квенных выражений, осуществляя
необходимые подстановки и преобразования;

извлекать информацию, представленную в таблицах, на ди
а
граммах,
графиках; составлять таблицы, строить диаграммы и граф
и
ки;

вычислять средние значения результатов и
з
мерений;

находить в
ероятности случайных событий в простейших сл
у
чаях;

определять значение функции по значению аргумента при различных
способах задания функции;

описывать по графику поведение и свойства функций, находить по
графику функции наибольшие и наименьшие значения;

и
спользуя графики
функций,
решать уравнени
я, простейшие системы уравнений
;

вычислять производные элементарных функций;

исследовать в простейших случаях функции на монотонность, находить
наибольшие и наименьшие значения функций, строить графики многочленов
с
использованием аппарата математического анализа;

решать рациональные, показательные и логарифмические уравнения и
неравенства, простейшие иррациональные и тригонометрические уравнения, их
системы;

анализировать в простейших случаях взаимное расположение
объектов в
пространстве;

изображать основные многогранники и круглые тела; выполнять чертежи
по условиям задач;

решать планиметрические и стереометрические задачи на нахождение
геометрических величин длин, углов, площадей, объемов;

использовать при решен
ии стереометрических задач
планиметрические
факты и методы
.

Ниже приведён образец экзаменационной работы для проведения ГВЭ
-
11 по
математике.




19

Образец

А

экзаменационного варианта
ГВЭ
-
11

по математике


1.

Найдите значение выражения log
2
240



log
2
3,75.

2.

На

каждые 1000 лампочек в среднем приходится 2 бракованные.
Какова вероятность купить исправную лампочку?

3.

Найдите
, если

и
.

4.

Туристическая фирма организует трёхдневные автобусные
экскурсии
. Стоимость экскурсии для одного человека составляет 2500 р.
Группам предоставляются скидки: группе от 3 до 10 человек


5%, группе
более 10 человек


10%. Сколько заплатит за экскурсию группа из 14 человек?

5.

Найдите площадь трапеции
ABCD
, изображённой на к
летчатой
бумаге. Сторона клетки равна 1 см.


6.

Клиент хочет арендовать автомобиль на сутки для поездки
протяжённостью 300

км. В таблице приведены характеристики трёх автомобилей
и стоимость их аренды.

Автомобиль

Топливо

Расход топлива
,

л н
а 100 км

Арендная плата
,

руб. за 1 сутки

А

Дизель
ное

5

3700

Б

Бензин

12

2600

В

Газ

15

2400

Помимо аренды клиент обязан оплатить топливо для автомобиля на всю
поездку. Цена дизельного топлива


19 рублей за литр, бензина


25 рублей за
литр, газа


14 р
ублей за литр.

Сколько рублей заплатит клиент за аренду и
топливо, если выберет самый дешёвый вариант?

7.

Найдите наименьшее значение функции

на
отрезке

[1;7].

8.

В правильной четырёхугольной пирамиде боковое ребро равно 41,
сторона основ
ания равна
. Найдите объём пирамиды.

9.

Около шара, радиус которого равен 3, описан цилиндр. Найдите
площадь боковой поверхности цилиндра.


20


10.

Решите неравенство:

В 2015 г. для государственной итоговой аттестации в
ыпускников, освоивших
образовательные программы среднего общего образования в специальных
коррекционных образовательных организациях для обучающихся с
ограниченными возможностями здоровья, разработаны самостоятельные
экзаменационные материалы по математи
ке для проведения ГВЭ
-
11.
Главное
отличие от данной экзаменационной работы заключается в том, что в
се

задания,
используемые для составления экзаменационных работ, содержатся в открытом
банке

ЕГЭ
по математике
базового уровня.

Экзаменационный вариант мар
кирован буквой К включает 10 заданий: два
задания по арифметике, два задания по теории вероятностей и статистике, два
задания по алгебре и началам анализа, два задания по планиметрии одно из них из
раздела измерения геометрических величин, два задан
ия по стереометрии.

Образец варианта соответствующей экзаменационной работы приводится
ниже.

При проверке математической подготовки выпускников, освоивших
образовательные программы основного общего образования в специальных
коррекционных образовательных

организациях для обучающихся с
ограниченными возможностями здоровья, оценивается уровень, на котором
сформированы следующие умения:

выполнять арифметические действия, сочетая устные и письменные
приемы; находить значения корня натуральной степени, степени

с
рациональным показателем, логарифма;

переходить от одной формы записи чисел к другой, предста
в
лять
десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную
в виде десятичной, пр
о
центы


в виде дроби и дробь


в виде процентов;
записывать

большие и малые числа с испол
ь
зованием целых степеней десятки;

решать текстовые задачи, включая задачи, связанные с отн
о
шением и с
пропорциональностью величин, дробями и пр
о
центами;

проводить по известным формулам и правилам преобразования буквенных
выраж
ений, включающих степени, радикалы, логарифмы и тригонометрические
функции;

вычислять значения числовых и буквенных выражений, осуществляя
необходимые подстановки и преобразования;


21

извлекать информацию, представленную в таблицах, на ди
а
граммах,
графиках; с
оставлять таблицы, строить диаграммы и граф
и
ки;

вычислять средние значения результатов и
з
мерений;

находить вероятности случайных событий в простейших сл
у
чаях;

определять значение функции по значению аргумента при различных
способах задания функции;

решать

рациональные, показательные и логарифмические уравнения и
неравенства, простейшие иррациональные и тригонометрические уравнения, их
системы;

анализировать в простейших случаях взаимное расположение объектов в
пространстве;

изображать основные многогранник
и и круглые тела; выполнять чертежи
по условиям задач;

решать планиметрические и стереометрические задачи на нахождение
геометрических величин длин, углов, площадей, объемов;

использовать при решении стереометрических задач
планиметрические
факты и метод
ы.

Ниже приведён образец экзаменационной работы для проведения ГВЭ
-
11 по
математике
для обучающихся, освоивших образовательные программы среднего
общего образования по программе коррекционного обучения
.


Образец

К

экзаменационного варианта для проведения

ГВЭ
-
11
по
математике
(
для обучающихся с
ОВЗ
)



1.

Найдите значение выражения
.

2.

На каждые 1000 лампочек в среднем приходится 2 бракованные.
Какова вероятность купить исправную лампочку?

3.

14 выпускников школы собираются учиться в техниче
ских вузах.
Они составляют 28% от числа всех выпускников. Сколько в школе
выпускников?

4.

Иван прочитал, что врачи рекомендуют выпивать в течение дня не
менее 2 л воды. В течение недели он вел подсчеты выпитой им воды, а по
полученным данным построил диаграм
му.


22


Сколько литров воды в день выпивал Иван в среднем в течение этой
недели?

5.

Вычислите:
.

6.

Найдите корень уравнения
.


7.

На плане указано, что прямоугольная комната имеет площадь 15,7
кв.м. Точные измерения пок
азали, что ширина комнаты равна 3,2 м, а длина 5 м.
На сколько квадратных метров площадь комнаты отличается от значения,
указанного в плане?

8.

В трапеции
ABCD

AB

=

CD
,

BDA

=

40°

и

BDC

=

30°. Найдите угол
ABD
. Ответ дайте в градусах.


9.

В правильной четырёхугольной пирамиде боковое ребро равно 41,
сторона основания равна
.

Найдите объём пирамиды.

10.


Около шара, радиус которого равен 3, описан цилиндр. Найдите
площадь боковой поверхности цилиндра.


23



2.1.1. Оценивание результатов экзамена ГВЭ
-
11 по
математике

письменная
форма

В Порядке

ГИА
-
11

определены следующие подходы к о
ценке
экзаменационных работ в форме ГВЭ
-
11.

При проведении ГИА в форме ГВЭ используется пятибалльная система
оценки п. 52 Порядка

ГИА
-
11
);

Экзаменационные работы проходят проверку двумя экспертами

п. 60 Порядка

ГИА
-
11
);

По результата
м первой и второй проверок эксперты независимо друг от
друга выставляют баллы за каждый ответ на задания экзаменационной работы
ГВЭ. Результаты каждого оценивания вносятся в протокол проверки
предметными комиссиями экзаменационных работ обучающихся


п. 61 Порядка

ГИА
-
11
);


В случае существенного расхождения в баллах, выставленных двумя
экспертами, назначается третья проверка. Существенное расхождение в баллах
определено в критериях оценивания по соответствующему учебному
предмету.

Эксперту, осуществляющему третью проверку, предоставляется
информация о баллах, выставленных экспертами, ранее проверявшими
экзаменационную работу п. 62 Порядка

ГИА
-
11
);


Распределение экзаменационных работ ГВЭ, расчет окончательных
баллов экз
аменационной работы ГВЭ производится председателем предметной
комиссии и фиксируется протоколом, который затем передается в ГЭК

п. 63 Порядка

ГИА
-
11
);

Результаты ГИА признаются удовлетворительными в случае, если
обучающийся по об
язательным учебным предметам при сдаче




ГВЭ
получил отметки не ниже удовлетворительной три балла п. 74 Порядка

ГИА
-
11
).

В дополнение к перечисленным выше требованиям Порядка определены
следующие подходы к оценке экзаменационных работ по математике:

за каждое верно выполненное задание выставляется 1 первичный балл;

з
адание считается выполненным верно, если выпускник выбрал
правильный путь решения, из письменной записи решения понятен ход его
рассуждений, получен верный ответ;

если по результатам прове
рки экзаменационной работы двумя экспертами
получены суммы, расходящиеся на два или более первичных баллов, то по
заданиям, в которых обнаружены расхождения, назначается третья проверка;


24


в других случаях расхождения оценки, выставленной двумя экспертами,
окончательной считается более высокая оценка;

рекомендуется следующая
шкала перевода

суммы первичных баллов за
выполненные задания ГВЭ
-
11 по математике в пятибалльную систему
оценивания:


Отметка по пятибалльной
системе оценивания

2

3

4

5

Первичн
ый балл

0

3

4

6

7

8

9

10


2.2. Особенности экзаменационной работы ГВЭ
-
11 по
математике

устная
форма

При разработке экзаменационной модели соблюдалась преемственность с
традиционными устными экзаменами по математике для обучающихся
по
образовательным пр
ограммам среднего общего образования
.
Образец
экзаменационного билета для проведения ГВЭ
-
11 по математике в устной форме
представлен
ниже
.

На экзамене проверяется с
формированность представлений выпускников о
математике как универсальном языке науки, об иде
ях и методах математики,
овладение математическими знаниями и умениями,

соответствующими базовому
уровню Федерального компонента государственного стандарта общего
образования
приказ Минобразования России от 05.03.2004 № 1089 Об
утверждении федерального к
омпонента г
о
сударственных стандартов начального
общего, основного общего и среднего полного общего обр
а
зования.

Для проведения ГВЭ
-
11 в устной форме по математике разработаны
варианты билетов, включающие в себя задания как по курсу алгебры и начал
анал
из, так и по курсу геометрии. Билеты предназначены и для тех выпускников,
которые осваивали программу в рамках двух предметов, и для тех, кто изучал
математику в рамках интегрированного курса.

Билеты включают 5 заданий: теоретическая часть


одно задание п
о геометрии
и одно задание по алгебре и началам анализа, практическая часть


одно задание по
геометрии и два задания по алгебре и началам анализа. Задания являются
стандартными для курса математики 10
-
11
-
х классов. Все они предполагают устное
изложение р
ешения, демонстрирующего
умение выпускника математически
грамотно излагать ход решения, приводя при этом необходимые пояснения и
обоснования.

Структура билета отвечает цели построения системы
дифференцированного обучения в современной школе. Дифференциация

обучения направлена на решение двух задач: формирования у всех учащихся
базовой математической подготовки, составляющей функциональную основу
общего образования, и создания для части школьников условий,
способствующих получению подготовки более высокого у
ровня.


25

Задания в практической части экзаменационных билетах расположены по
нарастанию сложности. Задания 3 и 4 соответствуют уровню базовой
математической подготовки, среди них одно задание по геометрии и одно
задание по курсу алгебры и начал анализа. Зад
ание 5 по курсу алгебры и начал
анализа соответствуют уровню повышенной подготовки.

Первые
теоретические вопросы билетов

охватывают основные блоки
содержания курса стереометрии: Параллельность прямых и плоскостей,
Перпендикулярность прямых и плоско
стей, Многогранники, Объемы
многогранников, Тела вращения, Объемы тел, что обеспечивает
достаточную полноту проверки овладения содержанием курса. Вторые
теоретические вопросы

билетов относятся к курсу алгебры и начал анализа и
охватывают блоки:

Корни и степени, Логарифмы, Функции, Начала
математического анализа. Теоретические вопросы экзаменационных билетов
даны

ниже
. В теоретической части экзаменационной работы от экзаменуемого
требуется воспроизвести определение, формулировку теоремы
и ее
доказательство, привести необходимые иллюстрирующие примеры.
Формулировки и доказательства могут различаться в зависимости от учебников,
по которым экзаменуемый обучался и готовился к экзамену.


Первые вопросы

экзаменационных билетов

1. Взаимное рас
положение прямых в пространстве. Параллельные прямые.
Скрещивающиеся прямые. Угол между двумя прямыми в пространстве.

2. Параллельность прямой и плоскости признаки и свойства.

3. Перпендикулярность прямой и плоскости признаки и свойства.

4. Перпенди
куляр и наклонная. Угол между прямой и плоскостью. Теорема
о трех перпендикулярах.

5. Параллельность плоскостей признаки и свойства.

6. Перпендикулярность плоскостей признаки и свойства.

7. Расстояние от точки до плоскости. Расстояние между прямой и
параллельной ей плоскостью. Расстояние между параллельными плоскостями.

8. Призма, ее основания, боковые ребра, высота. Прямая и правильная
призмы. Формула объема призмы.

9. Параллелепипед. Куб определения, свойства ребер, граней. Формулы
объема прямоуг
ольного параллелепипеда, куба.

10. Симметрии в кубе.

11. Пирамида, ее основание, боковые ребра, высота. Правильная пирамида.
Формулы площади поверхности и объема пирамиды.

12. Правильные многогранники тетраэдр, куб, октаэдр.

13. Цилиндр, его основания
, образующая, боковая поверхность, высота.
Формулы площади поверхности и объема цилиндра.


26

14. Конус, его основание, образующая, боковая поверхность, высота.
Формулы площади поверхности и объема конуса.

15. Шар и сфера, их сечения. Формулы объема шара и пло
щади сферы.

Вторые вопросы

экзаменационных билетов

1. Понятие о степени с рациональным показателем.

2. Десятичный и натуральный логарифмы, число
e
.

3. Понятие убывающей функции, пример, графическая иллюстрация.

4. Понятие возрастающей функции, пример, г
рафическая иллюстрация.

5. Понятие о точках максимума минимума функции, пример, графическая
иллюстрация.

6. Достаточные условия существования максимума минимума функции.

7. Понятие четной функции, пример, графическая иллюстрация.

8. Понятие нечетной
функции, пример, иллюстрация на графике.

9. Понятие периодической функции, пример, иллюстрация на графике.

10. Понятие производной, ее геометрический и физический смысл.

11. Логарифмическая функция, ее свойства и график.

12. Функция
y

= sin
x
, ее свойст
ва и график. Доказательство одного из
свойств.

13. Функция
y

= cos
x
, ее свойства и график.

14. Функция
y

= tg
x
, ее свойства и график.

15. Степенная функция, ее свойства и график.

Третьи вопросы г
еометрические задания практической части
)

экзаменационной

работы относятся к разделам: 
Многогранники, Объемы
многогранников, Тела вращения, Объемы тел, а
четвертые и пятые
вопросы 
а
лгебраические задания
практической части


к разделам

Начала
математического анализа,
Уравнения и неравенства и

Основ
ы
тригонометрии.


Номер вопроса
билета

Часть
работы

Раздел курса
математики

Уровень

1

Теоретическая

Стереометрия

-

2

Теоретическая

Алгебра и начала анализа

-

3

Практическая

Стереометрия

Базовый

4

Практическая

Алгебра и начала анализа

Базовый


27

5

Практи
ческая

Алгебра и начала анализа

Повышенный


Ниже приводится образец экзаменационного билета по математике.


Образец экзаменационного билета по математике


1. Взаимное расположение прямых в пространстве. Параллельные прямые.
Скрещивающиеся прямые. Угол меж
ду двумя прямыми в пространстве.

2. Понятие убывающей функции, пример, графическая иллюстрация.

3. Прямоугольник, стороны которого равны 2 см и 5 см, вращается вокруг
меньшей стороны. Найдите объем тела вращения.

4. Точка движется по координатной прямой с
огласно закону
,
где



координата точки в момент времени
t
. Найдите скорость точки при
.

5. Найдите наименьшее значение функции
, если
.

Оценка выполнения

отдельных заданий экзаменационной работы и
оценивание результатов экзамена

При проверке математической подготовки выпускников оценивается уровень,
на котором сформированы следующие умения:

воспроизводить определения математических объектов, формулировки
т
еорем и их доказательства, сопровождая их необходимыми чертежами,
рисунками, схемами;

использовать изученную математическую терминологию и символ
и
ку;

приводить примеры геометрических фигур и конфигураций, примеры
применения изученных свойств, фактов и мето
дов;

отвечать на вопросы, связанные с изученными математическими фактами,
понятиями и их свойствами, с методами решения задач;

четко, грамотно, логично излагать свои мысли;

проводить по известным формулам и правилам преобразов
а
ния буквенных
выражений, вкл
ючающих степени, радикалы, логарифмы и тр
и
гонометрические
функции;

исследовать в простейших случаях функции на мон
о
тонность, находить
наибольшие и наименьшие значения функций;

решать рациональные, показательные и лог
а
рифмические уравнения и
неравенства, пр
остейшие иррациональные и тригонометрич
е
ские уравнения,


28

решать стереометр
и
ческие задачи на нахождение геометрических величин
длин, углов, площадей, объемов;

использовать при решении стереометрических задач план
и
метрические
факты и методы;

проводить доказ
ательные рассуждения в ходе решения задач.

При оценке экзаменационной работы используется пятибалльная шкала.
Результаты государственной итоговой аттестации признаются
удовлетворительными в случае, если выпускник при сдаче ГВЭ
-
11 по
математике получил отме
тку не ниже удовлетворительной.

Оценивание результата экзамена по математике осуществляется
в
соответствии со следующими критериями
.


Критерии оценки
выполнения отдельных заданий
экзаменационной работы



Номер
задания

Критерии оценки выполнения задания

Ба
ллы


№ 1

Ответ экзаменуемого характеризуется смысловой
цельностью, речевой связностью и последовательностью
изложения:

логические ошибки отсутствуют, последовательность
изложения не

нарушена;

Или:

допущена одна ошибка / неточность, которая после
уточняю
щего вопроса экзаменатора исправлена
экзаменуемым

2

Ответ экзаменуемого характеризуется смысловой
цельностью, связностью и последовательностью изложения,

но

допущена одна ошибка / неточность, которую после
уточняющего вопроса экзаменатора экзаменуемый не

сумел
исправить

1

Другие случаи, не соответствующие указанным выше
критериям

0

№ 2

Ответ экзаменуемого характеризуется смысловой
цельностью, речевой связностью и последовательностью
изложения:

логические ошибки отсутствуют, последовательность
изложени
я не

нарушена;

Или:

допущена одна ошибка / неточность, которая после
уточняющего вопроса экзаменатора исправлена
экзаменуемым

2


29

Ответ экзаменуемого характеризуется смысловой
цельностью, связностью и последовательностью изложения,

но

допущена одна ошибка

/ неточность, которую после
уточняющего вопроса экзаменатора экзаменуемый не сумел
исправить

1

Другие случаи, не соответствующие указанным выше
критериям

0

№ 3

Ход решения верный, получен верный ответ

2

Ход решения верный, но экзаменуемый допустил од
ну
ошибку вычислительного характера

1

Другие случаи, не соответствующие указанным выше
критериям

0

№ 4

Ход решения верный, получен верный ответ

2

Ход решения верный, но экзаменуемый допустил одну
ошибку вычислительного характера

1

Другие случаи, не
соответствующие указанным выше
критериям

0

№ 5

Ход решения верный, получен верный ответ

2

Ход решения верный, но экзаменуемый допустил одну
ошибку вычислительного характера

1

Другие случаи, не соответствующие указанным выше
критериям

0

Максимальное к
оличество баллов за экзаменационный билет

10


Рекомендуется следующая шкала перевода суммы первичных баллов за
выполненные задания ГВЭ
-
11 по математике устная форма в пятибалльную
систему оценивания:


Отметка по пятибалльной
системе оценивания

2

3


4

5

Первичный балл

0

3

4

6

7

8

9

10



30

Приложение 1
.

Справочные материалы по математике
для участников
ГВЭ
-
9

АЛГЕБРА



Формула корней квадратного уравнения:

х
=
, где
D

=
b
2


4
ac
.




Если квадратный трехчлен
ax
2
+
bx

+
c

имеет дв
а корня
х
1

и
х
2
,
то

ax
2
+
bx

+
c

=
a
(
x



x
1
)(
x



x
2
);

если квадратный трехчлен
ax
2
+
bx

+
c

имеет единственный корень
х
0
, то

ax
2
+
bx

+
c

=
a
(
x



x
0
)
2
.




Формулы сокращенного умножения







Формула
n
-
го члена арифметической прогрессии 
а
n
, первый член
которой равен
а
1

и разность равна
d
:
а
n

= а
1

+
d
(
n



1).




Формула суммы первых
n

членов арифметической прогрессии
.




Формула
n
-
го члена г
еометрической прогрессии 
b
n
, первый член
которой равен
b
1
, а знаменатель равен
q
:
.




Формула суммы первых
n

членов геометрической прогрессии
.



31

Таблица квадратов двузначных чисел


Единицы

0

1

2

3

4

5

6

7

8

9

Десятки

1

100

121

144

169

196

225

256

289

324

361

2

400

441

484

529

576

625

676

729

784

841

3

900

961

1024

1089

1156

1225

1296

1369

1444

1521

4

1600

1681

1764

1849

1936

2025

2116

2209

2304

2401

5

2500

2601

2704

2809

2916

3025

3136

3249

3364

3481

6

3600

3721

3844

3969

4096

4225

4356

4489

4624

4761

7

4900

5041

5184

5329

5476

5625

5776

5929

6084

6241

8

6400

6561

6724

6889

7056

7225

7396

7569

7744

7921

9

8100

8281

8464

8649

8836

9025

9216

9409

9604

9801


ГЕОМЕТРИЯ



Сумма углов выпукл
ого
n
-
угольника равна



Радиус
r

окружности, вписанной в правильный треугольник со
стороной
a
,

равен
.



Радиус
R

окружности, описанной около правильного
треугольника со стороной
a
, равен
.



Для треугольника
ABC

со сторонами
AB

=
c
,
AC

=
b
,
BC

=
a
:


где
R



радиус описанной окружности.



Для треугольника
ABC

со сторонами
AB

=
c
,
AC

=
b
,
BC

=
a
:




Формула длины
l

окружности радиуса
R
:




Формула длины
l

дуги окружности радиуса
R
, на которую
опирается центральный угол в

градусов:


32

.



Формула площади
S

параллелограмма со стороной
a

и высотой
h
, проведённо
й к этой стороне:
S

=
ah
.



Формула площади
S

треугольника со стороной
a

и высотой
h
,
проведённой к этой стороне:

.



Формула площади
S

трапеции с основаниями
a
,
b

и высотой
h
:

.



Формула площади
S

круга ра
диуса
R
:



33

Приложение 2
.


Справочные материалы по математике для участников
ГВЭ
-
11


Алгебра


Таблица квадратов целых чисел от 0 до 99



Десятки

Единицы

0

1

2

3

4

5

6

7

8

9

0

0

1

4

9

16

25

36

49

64

81

1

100

121

144

169

196

225

256

289

324

361

2

400

441

484

529

576

625

676

729

784

841

3

900

961

1024

1089

1156

1225

1296

1369

1444

1521

4

1600

1681

1764

1849

1936

2025

2116

2209

2304

2401

5

2500

2601

2704

2809

2916

3025

3136

3249

3364

3481

6

3600

3721

3844

3969

4096

4225

43
56

4489

4624

4761

7

4900

5041

5184

5329

5476

5625

5776

5929

6084

6241

8

6400

6561

6724

6889

7056

7225

7396

7569

7744

7921

9

8100

8281

8464

8649

8836

9025

9216

9409

9604

9801


Свойства арифметического квадратного корня


при
,


при
,


Корни квадратного уравнения
,



при


при



Формулы сокращенного умножения





34


Степень и логарифм


Свойства

степени

Свойства логарифма

при
,







при
,
,
,
,










Геометрия


Средняя линия треугольника и трапеции





средняя линия








средняя линия







Теорема Пифагора

Длина
окружности




Площадь
круга













35


Описанная и впи
санная окружности правильного треугольника







Площади фигур




Параллелогра
мм


Треугольни
к












Трапеция


Ромб





,



диагонали







Площади поверхностей и объёмы тел




Прямоугольный
п
араллелепипед

Прямая
призма











Пирамида


Конус














36




Цилиндр





Шар











37


Тригонометрические функции



Прямоугольный треугольник

Тригонометрическая
окружность











Основное тригонометрическое тождество:


Некоторые значения тригонометрических функций


радианы

0








градусы












0
0






1

0


0


1
1





0



0

1


0
0



1





0



0



Приложенные файлы


Добавить комментарий